Math 102

Krishanu Sankar

November 22, 2018

Announcements

- Office Hours Today: Pushed forward to 1:303:00PM.
- Review Sessions next week: sometime in the 4-7PM window next week Wednesday, Thursday, Friday. Exact times and locations TBD.

Goals Today

- Inverse Trig functions (Guest Lecture by Amin)
- Review of inverse functions
- Arcsin, arccos, arctan
- Domain and range
- Fitting a sine function - practice

Recall...

Consider a point that is a distance of θ along the circumference of the circle of radius 1 centered at $(0,0)$. (starting at $(1,0)$, going counterclockwise)
$\sin (\theta)=y-$ coordinate
$\cos (\theta)=x$ - coordinate

$$
\sin ^{2}(\theta)+\cos ^{2}(\theta)=1
$$

- $\sin (\theta)$: 'If I go a distance of θ around the circle, what is my y-coordinate?'
$-\sin ^{-1}(a)$: 'If I am at y-coordinate a, then where on the circle am I?'

$\sin ^{-1}(a)$: 'If I am
at y-coordinate a, then where on the circle am I?'

Issue: $\sin ^{-1}(a)$ is not unique!

Inverse functions

Same Issue: The graph of $\sin (y)=x$ does not pass the vertical line test.

Inverse functions

$$
\begin{gathered}
y=\sin (x) \\
y=\arcsin (x)
\end{gathered}
$$

Solution: Let's cheat. Cut the graph off at (1, $\frac{\pi}{2}$) and $\left(-1,-\frac{\pi}{2}\right)$.
Definition: $\arcsin (x)$ is defined to be the unique number in the range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine equals x.

$-\sin (\theta)$: 'If I go a distance of θ around the circle, what is my y-coordinate?'

- $\arcsin (a)$: 'If I am at y-coordinate a, and am somewhere on the circle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$, then where on the circle am I?'

Question: What is $\arcsin \left(\frac{1}{2}\right)$?

Question: What is $\arcsin \left(\frac{1}{2}\right)$?

$\arcsin \left(\frac{1}{2}\right)=\frac{\pi}{6}$
$\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$ and $-\frac{\pi}{2} \leq \frac{\pi}{6} \leq \frac{\pi}{2}$.
Question: $\arcsin \left(\sin \left(\frac{5 \pi}{2}\right)\right)$?

Question: What is $\arcsin \left(\frac{1}{2}\right)$?

$\arcsin \left(\frac{1}{2}\right)=\frac{\pi}{6}$
$\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$ and $-\frac{\pi}{2} \leq \frac{\pi}{6} \leq \frac{\pi}{2}$.
Question: $\arcsin \left(\sin \left(\frac{5 \pi}{2}\right)\right)$?
$\arcsin \left(\sin \left(\frac{5 \pi}{2}\right)\right)=\frac{\pi}{2}$, because $\frac{\pi}{2}$ and $\frac{5 \pi}{2}$ have the same sine and $-\frac{\pi}{2} \leq \frac{\pi}{2} \leq \frac{\pi}{2}$.
Question: $\arcsin \left(\sin \left(\frac{2 \pi}{3}\right)\right)$?

Question: What is $\arcsin \left(\frac{1}{2}\right)$?

$\arcsin \left(\frac{1}{2}\right)=\frac{\pi}{6}$, because $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$ and $-\frac{\pi}{2} \leq \frac{\pi}{6} \leq \frac{\pi}{2}$.
Question: $\arcsin \left(\sin \left(\frac{5 \pi}{2}\right)\right)$? $\arcsin \left(\sin \left(\frac{5 \pi}{2}\right)\right)=\frac{\pi}{2}$, because $\frac{\pi}{2}$ and $\frac{5 \pi}{2}$ have the same sine and $-\frac{\pi}{2} \leq \frac{\pi}{2} \leq \frac{\pi}{2}$.
Question: $\arcsin \left(\sin \left(\frac{2 \pi}{3}\right)\right)$? $\arcsin \left(\sin \left(\frac{2 \pi}{3}\right)\right)=\frac{\pi}{3}$, because $\frac{\pi}{3}$ and $\frac{2 \pi}{3}$ have the same sine and $-\frac{\pi}{2} \leq \frac{\pi}{3} \leq \frac{\pi}{2}$.

Inverse functions

$$
\begin{gathered}
y=\cos (x) \\
\arccos (y)=x
\end{gathered}
$$

Same Issue: The graph of $\cos (y)=x$ does not pass the vertical line test.

Inverse functions

$$
\begin{gathered}
y=\cos (x) \\
y=\arccos (x)
\end{gathered}
$$

Solution: Cheat again. Cut the graph off at $(1,0)$ and $(-1, \pi)$.
Definition: $\arccos (x)$ is defined to be the unique number in the range $[0, \pi]$ whose cosine equals x.

Question: What is $\arccos \left(\frac{1}{2}\right) ?$

Question: What is

$\arccos \left(\frac{1}{2}\right) ?$

$\arccos \left(\frac{1}{2}\right)=\frac{\pi}{3}$
because $\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$ and $0 \leq \frac{\pi}{3} \leq \pi$.
Question:
$\arccos \left(\cos \left(\frac{4 \pi}{3}\right)\right) ?$

Question: What is

 $\arccos \left(\frac{1}{2}\right) ?$

$$
\arccos \left(\frac{1}{2}\right)=\frac{\pi}{3}
$$

$$
\text { because } \cos \left(\frac{\pi}{3}\right)=\frac{1}{2}
$$

$$
\text { and } 0 \leq \frac{\pi}{3} \leq \pi
$$

Question:
$\arccos \left(\cos \left(\frac{4 \pi}{3}\right)\right) ?$
$\arccos \left(\cos \left(\frac{4 \pi}{3}\right)\right)=-\frac{2 \pi}{3}$, because $\frac{4 \pi}{3}$ and $\frac{2 \pi}{3}$ have the same cosine and $0 \leq \frac{2 \pi}{3} \leq \pi$.
Question: $\arccos \left(\sin \left(-\frac{\pi}{4}\right)\right)$?

Question: What is

 $\arccos \left(\frac{1}{2}\right) ?$

$$
\arccos \left(\frac{1}{2}\right)=\frac{\pi}{3}
$$

$$
\text { because } \cos \left(\frac{\pi}{3}\right)=\frac{1}{2}
$$

$$
\text { and } 0 \leq \frac{\pi}{3} \leq \pi
$$

Question:
$\arccos \left(\cos \left(\frac{4 \pi}{3}\right)\right) ?$
$\arccos \left(\cos \left(\frac{4 \pi}{3}\right)\right)=-\frac{2 \pi}{3}$, because $\frac{4 \pi}{3}$ and $\frac{2 \pi}{3}$ have the same cosine and $0 \leq \frac{2 \pi}{3} \leq \pi$.
Question: $\arccos \left(\sin \left(-\frac{\pi}{4}\right)\right)$?
$\arccos \left(\sin \left(-\frac{\pi}{4}\right)\right)=\arccos \left(-\frac{1}{\sqrt{2}}\right)=\frac{3 \pi}{4}$.

- $\cos (t)=\sin \left(t+\frac{\pi}{2}\right)$
- $\cos (t)=(\sin (t))^{\prime}$

$$
-\sin (t)=(\cos (t))^{\prime}
$$

The Circle of Sine

$d / d t \Rightarrow \sin (t) \quad d / d t$

$-\cos (t) \quad \cos (t)$
$\int_{d / d t}^{-\sin (t)<d / d t}$

$$
\begin{aligned}
\cos (t) & =\sin \left(t+\frac{\pi}{2}\right) \\
-\sin (t) & =\sin (t+\pi) \\
-\cos (t) & =\sin \left(t+\frac{3 \pi}{2}\right)
\end{aligned}
$$

Other Trig Derivatives

$$
\begin{gathered}
(\tan (t))^{\prime}=\left(\frac{\sin (t)}{\cos (t)}\right)^{\prime} \\
=\frac{(\sin (t))^{\prime} \cos (t)-\sin (t)(\cos (t))^{\prime}}{\cos ^{2}(t)} \\
=\frac{\cos ^{2}(t)+\sin ^{2}(t)}{\cos ^{2}(t)}=\frac{1}{\cos ^{2}(t)}=\sec ^{2}(t) \\
(\sec (t))^{\prime}=\left(\frac{1}{\cos (t)}\right)^{\prime}=-\frac{(\cos (t))^{\prime}}{\cos ^{2}(t)}=\frac{\sin (t)}{\cos ^{2}(t)} \\
=\sec (t) \tan (t)
\end{gathered}
$$

Adding sines and cosines

Consider the function

$$
f(t)=\sin (t)+\cos (t)
$$

Question: For what values of t is $f(t)=0$? At what values of t does $f(t)$ achieve its minimum? Maximum?

Question: Can you write $f(t)$ in the form

$$
f(t)=A \sin (t-\phi)
$$

for some constants A, ϕ ?

Adding sines and cosines

Consider the function

$$
f(t)=\sin (t)+\cos (t)
$$

Question: For what values of t is $f(t)=0$? At what values of t does $f(t)$ achieve its minimum? Maximum?
$f(t)=0 \Longrightarrow \sin (t)=-\cos (t) \Longrightarrow t=3 \pi / 4,7 \pi / 4$

Adding sines and cosines

Consider the function

$$
f(t)=\sin (t)+\cos (t)
$$

Question: For what values of t is $f(t)=0$? At what values of t does $f(t)$ achieve its minimum? Maximum?

$$
\begin{aligned}
f^{\prime}(t) & =\cos (t)-\sin (t)=0 \\
\Longrightarrow \sin (t) & =\cos (t) \Longrightarrow t=\pi / 4,5 \pi / 4
\end{aligned}
$$

Check: $f(\pi / 4)=\sqrt{2}, f(5 \pi / 4)=-\sqrt{2}$

Adding sines and cosines

Consider the function

$$
f(t)=\sin (t)+\cos (t)
$$

- Zeroes at $t=3 \pi / 4$ and $t=7 \pi / 4$.
- Maximum of $\sqrt{2}$ at $t=\pi / 4$.
- Minimum of $-\sqrt{2}$ at $t=5 \pi / 4$.

Question: Can you write $f(t)$ in the form

$$
f(t)=A \sin (t-\phi)
$$

for some constants A, ϕ ?

$$
f(t)=\sqrt{2} \sin (t+\pi / 4)
$$

Adding sines and cosines

Challenge: Consider the function

$$
f(t)=a \cdot \sin (t)+b \cdot \cos (t)
$$

where a and b are two constants. Write $f(t)$ in the form

$$
f(t)=A \sin (t-\phi)
$$

for some constants A, ϕ.

There are two ways to approach this: the sine angle addition formula, OR using inverse trigonometric functions.
Answer: $f(t)= \pm\left(\sqrt{a^{2}+b^{2}}\right) \sin (t+\arctan (b / a))$

Oscillating Spring

One end of a spring is attached to a wall, and the other to a moveable mass. The position of the mass is given by $x(t)$ which satisfies the
 differential equation

$$
x^{\prime \prime}=k x
$$

Question: Is $k>0$ or $k<0$? (Think about how springs behave.)

Oscillating Spring

One end of a spring is attached to a wall, and the other to a moveable mass. The position of the mass is given by $x(t)$ which satisfies the
 differential equation

$$
x^{\prime \prime}=k x
$$

Question: Is $k>0$ or $k<0$? (Think about how springs behave.) k is negative.

Oscillating Spring

$$
x^{\prime \prime}=-9 x
$$

Question: Can you find solutions to this differential equation of the form $x(t)=\sin (\omega t)$ for some frequency ω ? What about $x(t)=\cos (\omega t)$?

Oscillating Spring

$$
x^{\prime \prime}=-9 x
$$

Question: Can you find solutions to this differential equation of the form $x(t)=\sin (\omega t)$ for some frequency ω ? What about $x(t)=\cos (\omega t)$?

$$
\begin{gathered}
x(t)=\sin (3 t) \\
x(t)=\cos (3 t)=\sin \left(3\left(t+\frac{\pi}{6}\right)\right)
\end{gathered}
$$

Oscillating Spring

$$
x^{\prime \prime}=-9 x
$$

Question: Can you find solutions to this differential equation of the form $x(t)=\sin (\omega t)$ for some frequency ω ? What about $x(t)=\cos (\omega t)$?

$$
\begin{gathered}
x(t)=\sin (3 t) \\
x(t)=\cos (3 t)=\sin \left(3\left(t+\frac{\pi}{6}\right)\right)
\end{gathered}
$$

The general solution is

$$
x(t)=A \sin (3(t-\phi))
$$

where A, ϕ are constants.

Oscillating Spring

$$
x^{\prime \prime}+9 x=0
$$

$$
x(t)=A \sin (3(t-\phi))
$$

Question: Suppose that the mass oscillates between $x=-2$ and $x=2$, and suppose that $x(0)=-2$.
Calculate $x(t)$.

Oscillating Spring

$$
x^{\prime \prime}+9 x=0
$$

$$
x(t)=A \sin (3(t-\phi))
$$

Question: Suppose that the mass oscillates between $x=-2$ and $x=2$, and suppose that $x(0)=-2$.
Calculate $x(t)$.
$x(t)$ has amplitude 2 , and has a minimum at $t=-2$. Thus,

$$
x(t)=-2 \cos (3 t)
$$

This can also be written as $x(t)=2 \sin \left(3\left(t-\frac{\pi}{6}\right)\right)$

Oscillating Spring

$$
\begin{gathered}
x^{\prime \prime}+9 x=0 \\
x(t)=x(t)=A \sin (3(t-\phi))
\end{gathered} \square_{0}
$$

Question: Suppose that the mass oscillates between $x=-2$ and $x=2$, and $x(0)=1$. Based on this information, there are two possibilities for what $x(t)$ is.

- Suppose that $x^{\prime}(0)>0$. Based on this information, sketch a graph of what $x(t)$ looks like. Label the zeroes and CP's. Then use this to express $x(t)$ in the form

$$
x(t)=A \sin (3(t-\phi))
$$

- Do the same for the case $x^{\prime}(0)<0$.

Solution

Here is what the two possible graphs look like, for $x^{\prime}(0)>0$ and $x^{\prime}(0)<0$.

Solution

We have that the function oscillates between $x=-2$ and $x=2$. So we can write the function in the form

$$
x(t)=2 \sin (3(t-\phi))=2 \sin (3 t-3 \phi)
$$

for some phase ϕ. Notice that since $\sin (3 t)$ has period $\frac{2 \pi}{3}$, we can assume $0 \leq 3 \phi<2 \pi$. Since $x(0)=1$, we find that $2 \sin (-3 \phi)=1$. Subject to the constraint that $0 \leq 3 \phi<2 \pi$, we find that $3 \phi=\frac{7 \pi}{6}, \frac{11 \pi}{6}$. One can check that the first possibility gives the case $x^{\prime}(0)<0$, and the second gives the case $x^{\prime}(0)>0$.

